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ABSTRACT − An orbital geometry of a debris-monitoring satellite that enables 
orbit determination of target objects is described. A monitoring satellite with an 
on-board optical sensor is placed in a sub-synchronous, retrograde circular orbit. 
The satellite observes look-angles during encounters with the target objects that 
come into its field of view. Three encounters in 24 hours then determine the orbit 
of the target. Orbit determination accuracy is modeled as a function of the 
observation geometry parameters, including the look-angle resolution, 
observation field of view, and relative altitude of the orbits. 
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INTRODUCTION  

In view of the particular importance of the spatial region of geosynchronous orbit (GSO) for 
telecommunication satellites, junk objects drifting in this region are a matter of concern. Ground-based 
optical sensors are currently able to detect GSO junk objects as small as one meter. However, detecting 
still smaller objects is recommended for better understanding the environment of GSO [1]. Meanwhile, a 
new detection technique is now being developed, that uses an optical sensor on board a monitoring 
satellite flying in a low altitude orbit [2]. If the monitoring-satellite orbit is high enough to be close to the 
GSO region, then smaller objects can be detected. Theoretical studies suggest that a close-up observation 
at a 1000-km range would enable detecting one-centimeter objects [3]. 

An orbital geometry that would appear reasonable for this close-up observation is illustrated in Fig. 1. The 
monitoring satellite revolves in a sub-synchronous, circular orbit. The satellite revolves at a faster rate 
than GSO target objects and observes targets one by one as it moves past them. Thus, the satellite 
completes one scan of the GSO region in one month, for example, if the relative altitude of the two orbits 
is 1000 km.  

This “direct” orbital geometry has a drawback, however. Suppose that the monitoring satellite is passing a 
target, as illustrated in Fig. 2. Satellite M measures the look-angle u of a target T, in reference to the 
satellite’s zenith Z. As M passes T, u will change from positive to negative. Now, suppose that there is 
another target T′ and its orbital altitude relative to M is twice that of T. The transversal motion of T′, 
relative to M, will then be twice the speed of T, while T′ will be twice the distance of T.  So, if M passes 
T and T′ at the same time, the look-angles will show identically changing patterns for T and T′. Thus, the 
look-angles will not be able to distinguish T and T′. That is to say, the target’s orbital radius is 
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indeterminable. 

 

 

 

 

 
 
 
 
 
 
    Fig. 1. Direct orbital geometry for monitoring.     Fig. 2. Drawback of the direct geometry. 
 
To solve this problem, this paper proposes a different orbital geometry, in which the revolution of the 
monitoring satellite is retrograde. We will show that this geometry enables the full determination of the 
target’s six orbital elements. We will model the orbit determination error as a function of orbital geometry 
parameters and discuss the problems that arise particularly with our retrograde geometry. 

ORBITAL GEOMETRY AND ENCOUNTER OBSERVATION 

Assume that our monitoring satellite M is in a sub-synchronous, retrograde circular orbit and target object 
T is in a near-synchronous orbit. And assume, for the present, that M and T are in the equatorial plane. 
When M and T pass each other to make an encounter, as illustrated in Fig. 3, the u of T is measured at M, 
in reference to M’s zenith Z. Because M and T fly in opposite directions, u changes fast. For example, if 
the relative orbital altitude h is 1000 km, the period of time that u remains within 45 degrees is 5.2 
minutes. For comparison, suppose that we are at a ground station and observe a satellite that passes its 
zenith. If the satellite altitude is 1000 km, the period of time that the satellite remains within 45 degrees of 
the zenith is then 4.5 minutes, which is shorter than our retrograde encounter. If a ground-based optical 
observation works, then our encounter-based observation would also work.  

 

 

 

 

 

 

 

           Fig. 3. Satellite-target encounter.            Fig. 4. Geometry of triangulation. 



What is observed during one encounter is interpreted using Fig. 4. If we stood at T, then we would see as 
if M triangulates the position of T by measuring the look-angles at M1 and M2 as M passes T. Here, Φ 
denotes the field of view of the optical sensor. This Φ may include the stroke of the sensor’s optical axis if 
it can be steered mechanically. Look-angle data will be taken at multiple points of time during one 
encounter, while the most significant data for the triangulation are those taken at the largest look-angle. 
So, we assume that we take look-angle data at M1 and M2. 

The accuracy of the triangulation is analyzed in Fig. 5. Suppose that T is hypothetically displaced by δr 
towards the radial direction and by δl along the longitudinal direction. Correspondingly, the look-angle 
data u1 and u2, taken at M1 and M2, would deviate as:  
 δu1 = (δr sinΦ + δl cosΦ) / (h / cosΦ) 
 δu2 = (– δr sinΦ + δl cosΦ) / (h / cosΦ) 
From these, we solve 
 δr = (δu1 – δu2) (h / cosΦ) / (2 sinΦ)  (1) 
 δl = (δu1 + δu2) (h / cosΦ) / (2 cosΦ)  (2) 
Assume that δu1 and δu2 denote measurement noises and that the noises are non-correlated gaussian with 
standard deviation σ{u}. The standard deviations of δr and δl are then equal to 
 σ{r} = ε / (21/2 sinΦ cosΦ)  (3) 
 σ{l} = ε / (21/2 cos2Φ)  (4) 
Here, a quantity ε = σ{u}h was introduced. This ε measures to what degree the look-angle resolves the 
target’s transversal position (see Fig. 6). Note that δr and δl are non-correlated, as can be seen from 
equations (1) and (2).  

 

 

 

 

 

 

 
         Fig. 5. Accuracy of triangulation.          Fig. 6. Resolution power of the look-angle. 
 

To summarize, the look-angle observation during one encounter yields one data set (r, l) with error-levels 
σ{r} and σ{l}. 

OBSERVATION EQUATIONS 

We next consider how the observed (r, l) data are related to the target’s orbit. The position of a 
near-synchronous target can be expressed relative to its reference stationary point. The reference point is 
42,165 km away from the Earth’s center, is directly above the equator, and is stationary with respect to the 



rotating earth. The target is assumed to be drifting near this reference point. Relative to the reference point, 
r measures the target’s radial position and l the longitudinal position. The target’s motion is then written 
in linearized terms, with a negligence of perturbations [4]:  
 r = – (2/3)D + E1 cos θ + E2 sin θ  (5) 
 l = L + D θ – 2E1 sin θ + 2E2 cos θ  (6) 
Here, the angle θ measures the earth’s rotation. This angle goes beyond 2π because it also measures the 
lapse of time. An increase of 2π in θ corresponds to 23 hours 56 minutes, which is referred to as one day. 
The parameters L and D are for the target’s longitudinal offset and drift-rate, and E1 and E2 are for a small 
orbital eccentricity. The set of L, D, E1, and E2 thus makes the orbital elements for discussing in-plane 
orbital motions. 

Suppose that M has made a first encounter with T and acquired an observation data set (r1, l1). We can 
assume that the encounter has occurred instantaneously at θ = 0. With this assumption, we write equations 
(5) and (6) in terms of variations to obtain the following observation equations. 
 δr1 = – (2/3) δD + δE1  (7) 
 δl1 = δL + 2δE2  (8) 
Half a day later, M encounters T again. Correspondingly, from equations (5) and (6) with θ = π, we have 
the following observation equations. 
 δr2 = – (2/3) δD – δE1   (9) 
 δl2 = δL + π δD – 2δE2  (10) 
Precisely speaking, the second encounter occurs slightly earlier than θ = π, because M revolves faster 
than T.  But, this deviation could be regarded as being small here. 

The third encounter occurs at θ = 2π, for which similarly we have: 
 δr3 = – (2/3) δD + δE1  (11) 
 δl3 = δL + 2π δD + 2δE2  (12) 
Observation equations (7-12) are understood as relating the errors in the observation data to the errors in 
the orbital elements.  

ORBIT DETERMINATION ERRORS 

We can now model the errors in orbit determinations. Suppose that we have acquired observation data 
from the first and second encounters. We then have four equations (7-10) and can determine: 
 δL = (δl1 + δl2) / 2 + 3π (δr1 + δr2) / 8 
 δD = –3(δr1 + δr2) / 4 
 δE1 = (δr1 – δr2) / 2 
 δE2 = (δl1 – δl2) / 4 – 3π (δr1 + δr2) / 16 
These denote the orbit determination errors as being at the reference time θ = 0. Calculating their standard 
deviations using equations (3) and (4) produces the error modeling: 
 σ{L} = 3πε / (8 sinΦ cosΦ)   (13) 
 σ{D} = 3ε / (4 sinΦ cosΦ)    (14) 
 σ{E1} = ε / (2 sinΦ cosΦ)      (15) 
 σ{E2} = 3πε / (16 sinΦ cosΦ)  (16) 



In the calculations here, 1/cosΦ was neglected as being small compared with 1/sinΦ. This is because the 
field of view Φ would tend to be small; otherwise the on-board observation hardware would be complex. 
The error modeling shows that smaller fields of view give rise to increased errors in every orbital 
element.  

If our orbit determination uses three encounters, then we will have six equations (7-12) for determining 
δL, δD, δE1, and δE2. This is an “over-determined” case and so should be analyzed by using the 
least-squares method. However, the actual orbit determination will proceed as follows. Equations (3) and 
(4) show that the observed l is much more accurate than r. So, the data l1, l2, and l3 will determine δL, δD, 
and δE2 through equations (8), (10), and (12), regardless of r1, r2, and r3. This results in 
 δL = (3δl1 +2δl2 – δl3) / 4 
 δD = (δl3 – δl1) / (2π) 
 δE2 = (δl1 – 2δl2 + δl3) / 8 
Their standard deviations are calculated as 
 σ{L} = 71/2 ε / (4 cos2Φ)   (17) 
 σ{D} = ε / (2π cos2Φ)  (18) 
 σ{E2} = 31/2 ε / (8 cos2Φ)  (19) 
After δL is known, any one of equations (7), (9), or (11) determines δE1 as 
 δE1 = δr1 + (δl3 – δl1) / (3π) 
Its standard deviation must be divided by 31/2, because three equations over-determine δE1. The result is 
 σ{E1} = ε / (61/2 sinΦ cosΦ)  (20) 

Thus, the orbit determination errors were modeled for two-encounter and three-encounter cases, 
respectively, by equations (13-16) and equations (17-20). If the two cases are compared, the 
three-encounter case is much better because the factor 1/sinΦ is absent. Thus, putting the three-encounter 
orbital elements in a catalog of tracked objects is adequate. As is obvious from the discussions, orbit 
determination using one encounter is impossible. 

OUT-OF-PLANE ORBITAL MOTION 

Target objects may move away from the equatorial plane. If this motion is measured in z, it is written as  
 z = I1cosθ + I2sinθ  (21) 
The elements I1 and I2 indicate an orbital inclination. This equation, together with (5) and (6) completes 
the linearized model of orbital motions. During an encounter, the target’s z-position is observed through 
the look-angle v measured at the satellite in reference to the equatorial plane (see Fig. 7). In terms of 
variations, z and v are related by 
 h δv = δz  (22) 
Consider the first encounter. Assuming θ = 0 in equation (21) and using equation (22), we have 
 h δv1 = δI1  (23) 
We must time the second encounter correctly here. The orbital velocity (per unit θ) of the monitoring 
satellite is faster than the geosynchronous orbital velocity by 3h/2. So, at θ = π, the encounter is already 
over and the satellite is past the target by 3πh/2. The encounter thus occurs at θ = π − α (see Fig. 8), with 
α = 3πh/(4R) where R is the geosynchronous orbital radius. For example, α is 3.2 degrees if h = 1000 km. 



The observation equation for θ = π − α, with a small α, thus becomes  
 hδv2 = −δI1 + α δI2   (24) 
Similarly, the third encounter occurs at θ = 2π − 2α, for which the observation equation becomes 
 hδv3 = δI1 − 2α δI2   (25) 
 
 
 
 
 
 
 
 
 
 
 
           Fig. 7. Out-of-plane observation.          Fig. 8. Timing of the second encounter. 
 
If our orbit determination uses two encounters, then equations (23) and (24) determine: 
 δI1 = hδv1 

 δI2 = h (δv1 + δv2) / α 
Assuming that σ{v} = σ{u}, their standard deviations are 
 σ{I1} = ε;  σ{I2} = 21/2 ε / α 
If two data points are acquired during each encounter, under our assumption, the total data points are 
twice that necessary for determining I1 and I2. So, the error modeling should be divided by 21/2. Using α’s 
value, we have 
 σ{I1} = ε / 21/2   (26) 
 σ{I2} = 4Rσ{v}/(3π)  (27) 
Thus, the I2-error is much larger than the I1-error. 

If we use three encounters, then three equations (23-25) over-determine δI1 and δI2. But, note that the 
sensitivity for detecting δI2 through equation (25) is twice that of equation (24). So, equations (23) and 
(25) practically determine the elements. Correspondingly, the error modeling becomes 
 σ{I1} = ε / 21/2  (28) 
 σ{I2} = 2Rσ{v}/(3π) (29) 
Thus, the errors are modeled for all six orbital elements, using simple terms. 

ORBITAL PREDICTION ERRORS 

Orbital elements stored in the catalog will be used for predictions when re-acquiring a target becomes 
necessary. A re-acquisition will succeed if the position errors δl and δz are small enough when predicted. 
From equations (6) and (21), these position errors are written for a prediction interval θ: 
 δl = θ δD – 2δE1 sin θ  
 δz = δI2 sin θ  



Note here that the prediction will be over a long period; thus, the drift-error term becomes significant. To 
this, other significant error terms with δE1 and δI2 are added, thus making the above equations. Use σ{l} 
to denote the standard deviation of δl. The upper bound of σ{l} is then equal to θσ{D} + 2σ{E1}. This 
upper bound is written, for the prediction interval of d days, as follows. 
 Ul (d) = ε d / (cos2Φ) + 2ε / (61/2 sinΦ cosΦ)   (30) 
Here, equations (18) and (20) are used. The predicted position may differ from the actual position as 
much as three times the standard deviation. Thus, a successful re-acquisition needs 3Ul (d) < h tanΦ. This 
condition tells us until what date the catalogued elements can be used. 

As for the error δz, its standard deviation changes periodically with θ, while its upper bound is:  
 Uz = σ{I2} = 2Rσ{v}/(3π)  (31)  
Equations (30) and (31) thus model the orbital prediction errors.  

An example of the prediction error modeling is shown in Fig. 9. The assumed conditions are 1000 km for 
the relative altitude, 10 degrees for the field of view, and 0.1 degree for σ{u} and σ{v}. The line marked 
with “D” is used for the first term of equation (30) as a reference. Meanwhile, orbital prediction errors are 
evaluated numerically, using the established covariance analysis and assuming the same conditions above. 
The numerical results are the undulating curves in the same figure. Our error modeling provides correct 
upper bounds to the numerical results.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Orbital prediction errors. 
 
The two-encounter orbit determination was inaccurate for long-term predictions because of its unreduced 
drift-rate error. However, the determination will be usable for acquiring the target on the third encounter. 
Suppose we have determined a target’s orbit from the first and second encounters. If we predict its 
position for the third encounter (θ = 2π), it will have an error δl = δL + 2π δD + 2δE2. The standard 
deviation of this error has the upper bound of σ{L} + 2πσ{D} + 2σ{E2}. Therefore, the acquisition on the 
third encounter will succeed if the following condition holds. 
 3 [σ{L} + 2πσ{D} + 2σ{E2}] < h tanΦ  
Substituting equations (13), (14), and (16) into this, we have 



 (27π / 4) σ{u} < sin2Φ 
Hence, a field of view greater than 6.2 degrees leads to a successful acquisition on the third encounter, if 
σ{u} = 0.1 degree and h = 1000 km. 

PROBLEMS PARTICULAR TO RETROGRADE GEOMETRY 

We have to identify, before starting observations on an encounter, which object in the field of view is our 
target if there are two or more. This is because the target object is unseen between encounters. This need 
for repeated identification is specific to our orbital geometry. Identification on the third encounter (and 
later encounters) will be supported by orbital predictions. Thus, the problem is how to identify our object 
on the second encounter.  

To support this identification, we consider determining two orbital elements, I1 and I2, from the first 
encounter. Precisely speaking, the encounter begins at time θ = −β, where β = h tanΦ/(2R). This is 
illustrated in Fig. 10, where (h /cosΦ) δv1 = δz1 holds. So, from equation (21), we have one observation 
equation: 
 (h / cosΦ) δv1 = δI1 cosβ − δI2 sinβ 
Here, h is assumed nominally. β is small, so this equation can be written as 
 (h / cosΦ) δv1 =  δI1 − β δI2  
Similarly, at the end of the encounter (time θ = β), we have another equation: 
 (h / cosΦ) δv2 =  δI1 + β δI2  
δI1 and δI2 are then determined and their standard deviations are calculated: 
 σ{I1} = ε / (21/2cosΦ) ;  σ{I2} = 21/2 R σ{v}/ (sinΦ)     

If the object’s z-motion is predicted for the second encounter (θ = π − α), its error will be δz = α δI2 (note 
that the I1-error is small), or 21/23π h σ{v}/(4 sinΦ) in standard deviation. Thus, the look-angle v can be 
predicted to within an error-level of 21/23πσ{v}/(4 sinΦ), which equals 1.9 degrees if σ{v} = 0.1 degree 
and Φ = 10 degrees. We use this prediction for the identification. 

 

 

 

 

 

   Fig. 10. Beginning of the first encounter.              Fig. 11. Undulating z-position. 
 

The identification will proceed as follows. The target’s z-position will undulate with time due to an orbital 
inclination, as illustrated in Fig. 11. We determine the pattern of this undulation from the first encounter. 
We cannot determine the in-plane orbital elements, so we assume an ideally synchronous motion in the 
equatorial plane. We then vary its drift-rate, slightly increasing and decreasing h. Accordingly, the 
predicted pattern of z will be varied, as shown in Fig. 11 by the dotted lines. These z-predictions, 
including the variations, are then converted into look-angle predictions. An object that matches one of 



these predictions is then our object in question. 

A target with a large orbital inclination introduces another problem. An encounter can then occur only 
when the target is crossing the equatorial plane. That is, two events must occur simultaneously: the target 
must cross the ascending or descending node, and the monitoring satellite must pass that node. These two 
events repeat in different periods, owing to the relative altitude h. Encounters will occur, but not 
frequently. Thus, observation chances are infrequent. This problem can be eased if the observational field 
of view is widened to the north and south. Using two or more sensors in a north-south array or one sensor 
with a north-south movable axis is thus recommended for the observation hardware. Selecting a larger h, 
which assures the safety-distance from GSO, also eases this problem. 

In the planning of the monitoring mission, we will first determine the relative orbital altitude as large 
enough for safety. We will then determine the size and shape of the field of view, and design the orbit 
determination accuracy using our error models. 

SUMMARY 

It was shown that a sub-synchronous, retrograde monitoring satellite with an on-board optical sensor is 
able to determine the orbital elements of a target object from three-encounter observations. Errors in orbit 
determination and prediction were modeled in simple terms. Target identification procedures were 
suggested, and field-of-view requirements were pointed out. 
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